Consider the rigorous energy equation of a free electron:

\[E^2 = c^2 p^2 + m^2 c^4 \quad - (1) \]

where \(E \) is the total energy:

\[E = \gamma mc^2 = \frac{p}{c} \quad - (2) \]

and \(p \) the relativistic momentum:

\[p = \gamma p_0 = \frac{m \dot{c}}{c} \quad - (3) \]

In this case there is no potential energy, so the relativistic Hamiltonian is:

\[H = E. \quad - (4) \]

Eqn. (1) is:

\[E^2 - m^2 c^4 = (E - mc^2)(E + mc^2) = c^2 p^2 \quad - (5) \]

so

\[E = \frac{c^2 p^2}{E + mc^2} + mc^2 \quad - (6) \]

\[= \frac{\gamma^2}{1 + \gamma} \frac{p_0^2}{m} + mc^2 \]

From eqn. (2)

\[\gamma = \frac{E_0}{mc^2} \quad - (7) \]

where \(\omega_0 \) is the angular frequency of the electron.
matter wave, and n is the electron mass. Therefore:

\[x = \frac{y^2}{1 + \beta} = \left(\frac{\ell c}{m c^2} \right)^2 \left(1 + \frac{\ell c}{m c^2} \right)^{-1} \]

Eq. (8) is true for any particle of mass m, including the photon.

Now apply a magnetic flux density $B \to \mathbf{A}$

electron beam. The resulting Hamiltonian is:

\[E = H = \frac{x}{m} \left(\frac{p_0 - e A}{m} \right) \cdot \left(\frac{p_0 - e A}{m} \right) + mc^2 \]

This is quantized as follows:

\[H \psi = \frac{2x}{m} \left(-i \hbar \mathbf{\nabla} - e \mathbf{A} \right) \cdot \left(\frac{p_0 - e A}{m} \right) + mc^2 \psi \]

In the $su(2)$ basis:

\[H \psi = \frac{x}{m} \sigma \cdot \left(-i \hbar \mathbf{\nabla} - e \mathbf{A} \right) \sigma \cdot \left(\frac{p_0 - e A}{m} \right) \psi + mc^2 \psi \]

giving the interaction Hamiltonian:

\[H_{\text{int}} \psi = -x e \hbar \frac{\sigma \cdot \mathbf{\nabla} \times \mathbf{A}}{m} \psi \]
3) The spin angular momentum of the electron is:

\[S = \frac{\hbar}{2} \sigma \] \hspace{1cm} -(13) \]

so:

\[H \cdot \sigma = -2xe \frac{\sigma \cdot \mathbf{B}}{m} \] \hspace{1cm} -(14) \]

where

\[x = \left(\frac{\hbar \omega}{m} \right)^{\frac{3}{2}} \left(1 + \frac{\hbar \omega}{m} \right)^{-1} \rightarrow \frac{1}{\hbar \omega}, \quad \frac{1}{2} \] \hspace{1cm} -(15) \]

The usual theory assumes:

\[\hbar \omega = mc^2 \] \hspace{1cm} -(16) \]

In eqn. (14):

\[S_z \sigma_z = m_s \hbar \sigma_z \] \hspace{1cm} -(17) \]

For a magnetic field aligned with the Z axis:

\[E = -2xe \frac{m_s B_z}{m} \] \hspace{1cm} -(18) \]

where

\[m_s = \frac{1}{2} \text{ and } -\frac{1}{2} \] \hspace{1cm} -(19) \]

The ESR resonance frequency is:

\[\omega_{ESR} = 2xe \frac{B_z}{m} \] \hspace{1cm} -(20) \]
\[\omega_{\text{ESR}} = 2 \left(\frac{\hbar \omega}{mc^2} \right)^2 \left(1 + \frac{\hbar \omega}{mc^2} \right)^{-1} \frac{e}{m} B z \] - (21)

This result is directly testable in a relativistic electron beam.

In the presence of a vacuum potential \(\mathbf{A}_{\text{vac}} \), there is an additional magnetic flux density:

\[\mathbf{B}_{\text{vac}} = \mathbf{v} \times \mathbf{A}_{\text{vac}} \] - (22)

and the next rate will apply to theory of QFT-31P.

to this situation.